Tonotopic organization of the superior olivary nucleus in the chicken auditory brainstem.

نویسندگان

  • Kathryn M Tabor
  • William L Coleman
  • Edwin W Rubel
  • R Michael Burger
چکیده

Topographic maps are salient features of neuronal organization in sensory systems. Inhibitory components of neuronal circuitry are often embedded within this organization, making them difficult to isolate experimentally. The auditory system provides opportunities to study the topographic organization of inhibitory long-range projection nuclei, such as the superior olivary nucleus (SON). We analyzed the topographic organization of response features of neurons in the SON of chickens. Quantitative methods were developed to assess and communicate this organization. These analyses led to three main conclusions: 1) sound frequency is linearly arranged from dorsal (low frequencies) to ventral (high frequencies) in SON; 2) this tonotopic organization is less precise than the organization of the excitatory nuclei in the chicken auditory brainstem; and 3) neurons with different response patterns to pure tone stimuli are interspersed throughout the SON and show similar tonotopic organizations. This work provides a predictive model to determine the optimal stimulus frequency for a neuron from its spatial location in the SON.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequency-specific projections of individual neurons in chick brainstem auditory nuclei.

Nucleus magnocellularis and nucleus laminaris in the avian brainstem contain second- and third-order auditory neurons thought to be homologous to the mammalian anteroventral cochlear nucleus and medial superior olivary nucleus, respectively. Nucleus laminaris in the chicken is a tonotopically organized sheet of bipolar neurons; each of these neurons receives spatially segregated bilateral inner...

متن کامل

Topographic organization in the auditory brainstem of juvenile mice is disrupted in congenital deafness.

There is an orderly topographic arrangement of neurones within auditory brainstem nuclei based on sound frequency. Previous immunolabelling studies in the medial nucleus of the trapezoid body (MNTB) have suggested that there may be gradients of voltage-gated currents underlying this tonotopic arrangement. Here, our electrophysiological and immunolabelling results demonstrate that underlying the...

متن کامل

THE JOURNAL OF COMPARATIVE NEUROLOGY 201:25-49 (1981) The Connections of the Inferior Colliculus and the Organization of the Brainstem Auditory System in the Greater Horseshoe Bat (Rhinolophus ferrumequinum)

The connections of the inferior colliculus, the mammalian midbrain auditory center, were determined in the greater horseshoe bat (Rhinolophus ferrumequinum), using the horseradish peroxidase method. In order to localize the auditory centers of this bat, brains were investigated with the aid of cell and fiber-stained material. The results show that most auditory centers are highly developed in t...

متن کامل

Alteration of glycine receptor immunoreactivity in the auditory brainstem of mice following three months of exposure to radiofrequency radiation at SAR 4.0 W/kg

The increasing use of mobile communication has triggered an interest in its possible effects on the regulation of neurotransmitter signals. Due to the close proximity of mobile phones to hearing-related brain regions during usage, its use may lead to a decrease in the ability to segregate sounds, leading to serious auditory dysfunction caused by the prolonged exposure to radiofrequency (RF) rad...

متن کامل

BOLD fMRI investigation of the rat auditory pathway and tonotopic organization

Rodents share general anatomical, physiological and behavioral features in the central auditory system with humans. In this study, monaural broadband noise and pure tone sounds are presented to normal rats and the resulting hemodynamic responses are measured with blood oxygenation level-dependent (BOLD) fMRI using a standard spin-echo echo planar imaging sequence (without sparse temporal sampli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 520 7  شماره 

صفحات  -

تاریخ انتشار 2012